Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits.
نویسندگان
چکیده
Parkinson's disease (PD) is the most prevalent hypokinetic movement disorder, and symptomatic PD pathogenesis has been ascribed to imbalances between the direct and indirect pathways in the basal ganglia circuitry. Here, we applied glutamate receptor blockers to the subthalamic nucleus (STN) of parkinsonian rats and evaluated locomotor behaviors via single-unit and local-field recordings. Using this model, we found that inhibition of NMDAergic cortico-subthalamic transmission ameliorates parkinsonian motor deficits without eliciting any vivid turning behavior and abolishes electrophysiological abnormalities, including excessive subthalamic bursts, cortico-subthalamic synchronization, and in situ beta synchronization in both the motor cortex and STN. Premotor cortex stimulation revealed that cortico-subthalamic transmission is deranged in PD and directly responsible for the excessive stimulation-dependent bursts and time-locked spikes in the STN, explaining the genesis of PD-associated pathological bursts and synchronization, respectively. Moreover, application of a dopaminergic agent via a microinfusion cannula localized the therapeutic effect to the STN, without correcting striatal dopamine deficiency. Finally, optogenetic overactivation and synchronization of cortico-subthalamic transmission alone sufficiently and instantaneously induced parkinsonian-associated locomotor dysfunction in normal mice. In addition to the classic theory emphasizing the direct-indirect pathways, our data suggest that deranged cortico-subthalamic transmission via the NMDA receptor also plays a central role in the pathophysiology of parkinsonian motor deficits.
منابع مشابه
Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat
Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramid...
متن کاملStimulation of Cortico-Subthalamic Projections Amplifies Resting Motor Circuit Activity and Leads to Increased Locomotion in Dopamine-Depleted Mice
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor function in patients with Parkinson's disease (PD). STN-DBS enables similar improved motor function, including increased movement speed (reduced bradykinesia), in the 6-OHDA dopamine-depletion mouse model of PD. Previous analyses of electrophysiological recordings from STN and motor cortex (M1) have explored signaling ...
متن کاملResting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity
Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal model...
متن کاملAbsence of cognitive deficits following deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease.
Electrical stimulation of the subthalamic nucleus is an effective treatment for the motor symptoms of Parkinson's disease. While most patients who undergo this procedure do not appear to suffer behavioral side effects, a minority experience cognitive or emotional deficits, and longitudinal studies have reported declines; however, the measures of cognitive function used have been limited. One ex...
متن کاملDeep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 124 10 شماره
صفحات -
تاریخ انتشار 2014